Hybuild Project

HYBUILD - Innovative compact HYbrid electrical/thermal storage systems for low energy BUILDings

H2020-EEB-06-2017 G.A. n. 768824

HYBUILD - Innovative compact HYbrid electrical/thermal storage systems for low energy BUILDings is an EU Horizon 2020-funded project, led by COMSA Corporación, which will develop two innovative compact hybrid electrical/thermal storage systems for stand-alone and district connected buildings. HYBUILD will aim at developing cost-effective and environmental-friendly solutions, while ensuring comfort conditions in residential buildings located in two different climates: Mediterranean climate where cooling is critical and Continental climate where a stronger focus is put on heating demand.

HYBUILD is led by the Spanish group COMSA Corporación and it associates 21 partners from 9 EU countries (Austria, Cyprus, Czech Republic, France, Germany, Greece, Italy, Spain, Switzerland). Role of STRESS Scarl: Building and system requirements definitions, LCA, LCCA, SLCA, Standardization, Dissemination and exploitation.

Project Start: October 2017

Duration: 4 years

Total budget: 6M€

 

Partners
Project Coordinator: COMSA Corporación de Infraestructuras

Universitat de Lleida, CNR – ITAE, Austrian Institute of Technology, Nobatek, CSEM, EURAC, FAHRENHEIT, Mikrometal, STRESS scarl, National Technical University of Athens, FRESNEX, ENGINEERING, DAIKIN Greece, OCHSNER, FOSS (University of Cyprus), Municipality of Almatret, AKG, R2M Solution, Municipality of Aglantzia, PINK GmbH.

 

www.hybuild.eu

PrintEmail

Reshealience project

 

 

RESHEALIENCE - Rethinking coastal defence and Green-Energy Service infrastructures through enHancEddurAbiLIty high-performance fiber reinforced cement-based materials

H2020-NMBP-2016-2017, RIA - G.A. n. 760824

 

 

The main goal of the project RESHEALIENCE - Rethinking coastal defence and Green-Energy Service infrastructures through enHancEddurAbiLIty high-performance fiber reinforced cement-based materials is to develop an Ultra High Durability Concrete (UHDC) and a Durability Assessment-based Design (DAD) methodology for structures, to improve durability and predict their long-term performance under Extremely Aggressive Exposures (EAE: XS-chloride induced corrosion, XA-chemical attack).

The improvement will be supported upgrading Ultra High Performance Fiber Reinforced Concrete with new functionalities. Focus will be on marine structures and infrastructures for geothermal/biomass energy plants, whose severe conditions challenge the performance, lead to quick deterioration and shorten the lifespan, resulting in billions Euro spent each year in repairs.

This goal will be achieved through the following activities (variations compared to current reinforced concrete):

  • Tailoring UHDC to target a 100% enhancement in material durability.
  • Upgrading experimental methods to validating durability properties of UHDCs in service conditions (cracked state) and validate an enhancement of at least a 30%.
  • Developing a theoretical model to evaluate ageing and degradation of UHDC structures in EAE with a 75% of accuracy, extending the modelling to predict the lifespan.
  • Proposing new design concepts DAD, for the use of UHDC and assessing the structures durability and Life Cycle Analysis with a 95% confidence level, to achieve an increase service life of 30%, and a long-term reduction of maintenance costs by at least 50%.
  • Proving, through long-term monitoring in six full-scale proofs-of concept that UHDC in real conditions has the expected enhancement of 30% in durability for both: repaired and new elements.
  • Developing a Business Plan per industrial partner analyzing the market niches and sectors where the developments will be exploited.

The competence garnered by all the partners will put them in the forefront of the civil engineering field in order to provide sustainable solutions for the most challenging needs of our society.

 

Project Start: January 2017

Duration: 4 years

Total budget: 5,557,595.50 €

 

I partner
Project Coordinator: Politecnico di Milano
Cyes Maritime Works, Enel, Stress Scarl, Research and Development Concrete, Banagher Precast, APIEurope, Penetron, Universitat Politècnica de València, Technische Universitaet Dresden, Agencia estatal Consejo Superior de Investigaciones Científicas, Ben Gurion University, University of Malta.


uhdc.eu

PrintEmail

Ti-Rex Project

 

TI-REX - Transport Infrastructures Resilience to EXtreme Events

H2020 MG-7-1-2017

 

Il progetto TI-REX - Transport Infrastructures Resilience to EXtreme Events, ha come obiettivo quello di  sviluppare tecnologie, metodologie e tool per valutare, gestire e mitigare i rischi naturali ed antropici (es. inondazioni, terremoti, frane, tsunami, tempeste,  attacchi terroristici) delle infrastrutture di trasporto. Le attività di ricerca e sviluppo saranno condotte secondo un approccio multi-scala e in una prospettiva non solo di breve termine, ma anche di lungo e medio termine.

L’analisi si focalizzerà sia sulla infrastruttura stradale, valutata nel suo complesso, sia sulle singole strutture e nodi intermodali di cui è costituita. Per quel che concerne invece la gestione “temporale” dei rischi, si svilupperanno strategie e tecnologie per la gestione delle emergenze e si implementeranno sistemi di early warning capaci, tramite sistemi avanzati di monitoraggio e telecomunicazione, di fornire in tempo reale le informazioni relative ai danni potenziali che possono essere causati da un imminente evento pericoloso (es. terremoto e tsunami). Le procedure per le valutazioni di rischio delle infrastrutture di trasporto verranno, infine,  implementate ed integrate in una piattaforma informatica. Questa costituirà uno strumento di supporto ai processi decisionali dei gestori della rete nella pianificazione degli interventi di manutenzione ordinaria e straordinaria, durante l’intera vita utile dell’opera stessa.
I metodi e le procedure sviluppate nell’ambito delle progetto per la valutazione della vulnerabilità delle grandi infrastrutture viarie, unitamente alle tecniche e tecnologie di mitigazione del rischio, di monitoraggio e di gestione dell’emergenza (early warning) saranno applicate a sistemi infrastrutturali reali che costituiranno i casi dimostratori. Tra i vari dimostratori, inoltre,  grazie al supporto della azienda napoletana A.N.M., è stata prevista anche una zona di scambio intermodale di Napoli.

 

Partner
Capofila: Stress Scarl
D’Appolonia SPA (DAPP), Eidgenoessische Technische Hochschule Zuerich (ETHZ), Orbital Eye BV, Hipersfera d.o.o. za projektiranje (Hipersfera Ltd), Istituto Nazionale di Geofisica e Vulcanologia (INGV), Universita degli Studi di Firenze (UniFI DISIT), Forum of European National Highway Research Laboratories (FEHRL), Kentro Meleton Asfaleias (KEMEA), National Center for Scientific Research “Demokritos”, The University Of Exeter (UNEXE), Network Rail Infrastructure Limited, Bogazici University, Istanbul Metropolitan Municipality (IMM), Iridex-Group-Plastic SRL (Iridex), Extreme Materials srl, Autoritatea Feroviara Romana (AFER), National Railway Company “CFR” SA (CFR-SA), National Company of Road Infrastructure Administration (Romanian), Metropolitana di Napoli (End-user), Attikes Diadromes S.A. (End-user).


Progetto promosso al secondo STEP

PrintEmail

H2O Project

 

H2O - Holistic development of Highly durable materials fOr infrastructures in contact with water

H2020-NMBP-06-2017

 

Il progetto H2O - Holistic development of Highly durable materials fOr infrastructures in contact with water, ha come obiettivo quello di sviluppare nuovi materiali da costruzione per  aumentare la durabilità delle condotte d’acqua, esistenti o nuove, per l’approvvigionamento idrico ed il trattamento delle acque.
I materiali e le soluzioni proposte saranno validati attraverso la loro applicazione in un impianto industriale di trattamento acque ubicato in Baiña, Spagna.
Saranno inoltre oggetto di indagine e di sviluppo, modelli predittivi per la valutazione del degrado e delle prestazioni dei materiali nel tempo.

I materiali che si svilupperanno nell’ambito del progetto sono:

  • materiali chimicamente attivati (es. Geopolimeri) e calcestruzzi ad altissime prestazioni da sostituire al calcestruzzo tradizionale;
  • rinforzi in materiale composito in sostituzione dei rinforzi in acciaio;
  • polimeri con nanoparticelle da usare come filler;
  • GFRP con nanotubi di carbonio;
  • nanocoating.

 

Partner

Capofila: CETMA
Acciona, Carbon Compositi, CBI, ECOCEM materials, Fenix, Global Nanotechnologies SA, Queen’s University, National Taiwan University, Chemstream BVBA, STRESS Scarl, University of Sheffield, Wytwornia betonow.

Progetto promosso al secondo STEP 

PrintEmail

 

 

RE4 - REuse and REcycling of CDW materials and structures in energy efficient pREfabricated elements for building REfurbishment and construction 

H2020-EEB-2016-2017/H2020-EEB-2016 G. A. n. 723583

 

The overall goal of the  RE4 Project is to promote new technological solutions for the design and development of structural and non-structural pre-fabricated elements with high degree of recycled materials and reused structures from partial or total of buildings. The developed technology will aim at energy efficient new construction and refurbishment, thus minimizing environmental impacts. The RE4-Project targets the demonstration of suitable design concepts and building elements produced from CDW in an industrial environment, considering perspective issues for the market uptake of the developed solutions. The technical activities will be supported by LCA and LCC analyses, certification and standardization procedures, demonstration activities, professional training, dissemination, commercialisation and exploitation strategy definition, business modelling and business plans.
The overarching purpose is to develop a RE4-prefabricated energy-efficient building concept that can be easily assembled and disassembled for future reuse, containing up to 65% in weight of recycled materials from CDW (ranging from 50% for the medium replacement of the mineral fraction, up to 65% for insulating panels and concrete products with medium mineral replacement coupled with the geopolymer binder). The reusable structures will range from 15-20% for existing buildings to80-90% for the RE4-prefabricated building concept.

 

Project Start: 2016 - Ongoing 

 

Partners
Project Coordinator: CETMA

Acciona Infraestructuras S.A., CBI Betonginstitutet AB, CDE Global Limited,  Creagh Concrete Products Limited, Fenix TNT SRO, The Queen’s University Of Belfast, Roswag Architekten Gesellschaft Von Architekten MBH, STAM Srl,  STRESS Scarl, National Taiwan University of Science and Technology, Vortex Hydra S.r.l., Association des Cites et des Regions pour le Recyclage et la Gestion Durable des Ressources


www.re4.eu

PrintEmail